Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Vaccines (Basel) ; 11(2)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2244582

ABSTRACT

Accurate studies on the dynamics of Pfizer-Biontech BNT162b2-induced antibodies are crucial to better tailor booster dose administration depending on age, comorbidities, and previous natural infection with SARS-CoV-2. To date, little is known about the durability and kinetics of antibody titers months after receiving a booster dose. In this work, we studied the dynamic of anti-Trimeric Spike (anti-TrimericS) IgG titer in the healthcare worker population of a large academic hospital in Northern Italy, in those who had received two vaccine doses plus a booster dose. Blood samples were collected on the day of dose 1, dose 2, then 1 month, 3 months, and 6 months after dose 2, the day of the administration of the booster dose, then 1 month and 3 months after the booster dose. The vaccination immunogenicity was evaluated by dosing anti-TrimericS IgG titer, which was further studied in relation to SARS-CoV-2 infection status, age, and sex. Our results suggest that after the booster dose, the anti-TrimericS IgG production was higher in the subjects that were infected only after the completion of the vaccination cycle, compared to those that were infected both before and after the vaccination campaign. Moreover, the booster dose administration exerts a leveling effect, mitigating the differences in the immunogenicity dependent on sex and age.

2.
Biomolecules ; 12(6)2022 06 13.
Article in English | MEDLINE | ID: covidwho-1896805

ABSTRACT

Since no definitive cure for COVID-19 is available so far, one of the challenges against the disease is understanding the clinical features and the laboratory inflammatory markers that can differentiate among different severity grades of the disease. The aim of the present study is a comprehensive and longitudinal evaluation of SCD14-ST and other new inflammatory markers, as well as cytokine storm molecules and current inflammatory parameters, in order to define a panel of biomarkers that could be useful for a better prognostic prediction of COVID-19 mortality. SCD14-ST, as well as the inflammatory markers IL-6, IL-10, SuPAR and sRAGE, were measured in plasma-EDTA of ICU COVID-19 positive patients. In this longitudinal study, SCD14-ST resulted significantly higher in patients who eventually died compared to those who were discharged from the ICU. The results suggest that the new infection biomarker SCD14-ST, in addition to new generation inflammatory biomarkers, such as SuPAR, sRAGE and the cytokines IL-6 and IL-10, can be a useful prognostic tool associated with canonical inflammatory parameters, such as CRP, to predict SARS-CoV-2 outcome in ICU patients.


Subject(s)
COVID-19 , Lipopolysaccharide Receptors , Biomarkers , COVID-19/diagnosis , Humans , Interleukin-10 , Interleukin-6 , Longitudinal Studies , Receptors, Urokinase Plasminogen Activator , SARS-CoV-2
3.
Obesity (Silver Spring) ; 30(3): 606-613, 2022 03.
Article in English | MEDLINE | ID: covidwho-1697542

ABSTRACT

OBJECTIVE: The excess of visceral adipose tissue might hinder and delay immune response. How people with abdominal obesity (AO) will respond to mRNA vaccines against SARS-CoV-2 is yet to be established. SARS-CoV-2-specific antibody responses were evaluated after the first and second dose of the BNT162b2 mRNA vaccine, comparing the response of individuals with AO with the response of those without, and discerning between individuals with or without prior infection. METHODS: Immunoglobulin G (IgG)-neutralizing antibodies against the Trimeric complex (IgG-TrimericS) were measured at four time points: at baseline, at day 21 after vaccine dose 1, and at 1 and 3 months after dose 2. Nucleocapsid antibodies were assessed to detect prior SARS-CoV-2 infection. Waist circumference was measured to determine AO. RESULTS: Between the first and third month after vaccine dose 2, the drop in IgG-TrimericS levels was more remarkable in individuals with AO compared with those without AO (2.44-fold [95% CI: 2.22-2.63] vs. 1.82-fold [95% CI: 1.69-1.92], respectively, p < 0.001). Multivariable linear regression confirmed this result after inclusion of assessed confounders (p < 0.001). CONCLUSIONS: The waning antibody levels in individuals with AO may further support recent recommendations to offer booster vaccines to adults with high-risk medical conditions, including obesity, and particularly to those with a more prevalent AO phenotype.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibody Formation , Attention , COVID-19 Vaccines , Humans , Obesity , Obesity, Abdominal , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
4.
Obesity (Silver Spring) ; 29(9): 1427-1433, 2021 09.
Article in English | MEDLINE | ID: covidwho-1239993

ABSTRACT

OBJECTIVE: Adipose tissue plays a role in the novel coronavirus disease 2019 (COVID-19). Epicardial adipose tissue (EAT), a unique visceral fat, presents with a high degree of inflammation in severe COVID-19. Whether and how adipose tissue may respond to the COVID-19 therapies is unknown. METHODS: The difference in computed tomography-measured EAT and subcutaneous (SAT) attenuation, defined as mean attenuation expressed in Hounsfield units (HU), was retrospectively analyzed in 72 patients (mean [SD] age was 59.6 [12.4] years, 50 patients [69%] were men) at the hospital admission for COVID-19 and 99 days (interquartile range = 71-129) after discharge. RESULTS: At the admission, EAT-HU was significantly correlated with blood glucose levels, interleukin 6, troponin T levels, and waist circumference. EAT-HU decreased from -87.21 (16.18) to -100.0 (11) (p < 0.001), whereas SAT-HU did not change (-110.21 [12.1] to -111.11 [27.82]; p = 0.78) after therapy. Changes in EAT-HU (expressed as ∆) significantly correlated with dexamethasone therapy (r = -0.46, p = 0.006) and when dexamethasone was combined with tocilizumab (r = -0.24, p = 0.04). CONCLUSIONS: Dexamethasone therapy was associated with significant reduction of EAT inflammation in COVID-19 patients, whereas SAT showed no changes. Anti-inflammatory therapies targeting visceral fat may be helpful in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/therapeutic use , Intra-Abdominal Fat , Pericardium , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Female , Humans , Inflammation , Intra-Abdominal Fat/diagnostic imaging , Male , Middle Aged , Pericardium/diagnostic imaging , Retrospective Studies
6.
J Clin Med ; 9(11)2020 Nov 23.
Article in English | MEDLINE | ID: covidwho-945856

ABSTRACT

The receptor for advanced glycation end products (RAGE), a well-known player of diabetes mellitus (DM)-related morbidities, was supposed to be involved in coronavirus disease-19 (COVID-19), but no data exist about COVID-19, DM, and the soluble RAGE (sRAGE) forms. We quantified total sRAGE and its forms, the endogenously secretory esRAGE and the membrane-cleaved cRAGE, in COVID-19 patients with and without DM and in healthy individuals to explore how COVID-19 may affect these molecules and their potential role as biomarkers. Circulating sRAGE and esRAGE were quantified by enzyme-linked-immunosorbent assays. cRAGE was obtained by subtracting esRAGE from total sRAGE. sRAGE, esRAGE, cRAGE, and the cRAGE/esRAGE ratio did not differ between DM and non-DM patients and had the same trend when compared to healthy individuals. Levels of total sRAGE, cRAGE, and cRAGE/esRAGE ratio were upregulated, while esRAGE was downregulated. The lack of difference between DM and non-DM COVID-19 patients in the levels of sRAGE and its forms supports the hypothesis that in COVID-19 the RAGE system is modulated regardless of glycemic control. Identifying how sRAGE and its forms associate to COVID-19 prognosis and the potential of RAGE as a therapeutic target to control inflammatory burden seem of relevance to help treatment of COVID-19.

7.
J Clin Med ; 9(11)2020 Oct 28.
Article in English | MEDLINE | ID: covidwho-895386

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19)-associated coagulopathy is characterized by a prothrombotic state not yet comprehensively studied. We investigated the coagulation pattern of patients with COVID-19 acute respiratory distress syndrome (ARDS), comparing patients who survived to those who did not. Methods: In this prospective cohort study on 20 COVID-19 ARDS patients, the following biomarkers were measured: thrombin generation (prothrombin fragment 1 + 2 (PF 1 + 2)), fibrinolysis activation (tissue plasminogen activator (tPA)) and inhibition (plasminogen activator inhibitor 2 (PAI-2)), fibrin synthesis (fibrinopeptide A) and fibrinolysis magnitude (plasmin-antiplasmin complex (PAP) and D-dimers). Measurements were done upon intensive care unit (ICU) admission and after 10-14 days. Results: There was increased thrombin generation; modest or null release of t-PA; and increased levels of PAI-2, fibrinopeptide A, PAP and D-dimers. At baseline, nonsurvivors had a significantly (p = 0.014) higher PAI-2/PAP ratio than survivors (109, interquartile range (IQR) 18.1-216, vs. 8.7, IQR 2.9-12.6). At follow-up, thrombin generation was significantly (p = 0.025) reduced in survivors (PF 1 + 2 from 396 pg/mL, IQR 185-585 to 237 pg/mL, IQR 120-393), whereas it increased in nonsurvivors. Fibrinolysis inhibition at follow-up remained stable in survivors and increased in nonsurvivors, leading to a significant (p = 0.026) difference in PAI-2 levels (161 pg/mL, IQR 50-334, vs. 1088 pg/mL, IQR 177-1565). Conclusion: Severe patterns of COVID-19 ARDS are characterized by a thrombin burst and the consequent coagulation activation. Mechanisms of fibrinolysis regulation appear unbalanced toward fibrinolysis inhibition. This pattern ameliorates in survivors, whereas it worsens in nonsurvivors.

SELECTION OF CITATIONS
SEARCH DETAIL